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Abstract

To better understand the ground effect encountered by
slender wing supersonic transport aircraft, a test was conducted
at NASA Langley Research Center’s 14 x 22 foot Subsonic Wind
Tunnel in October, 1997.  Emphasis was placed on improving
the accuracy of the ground effect data by using a “dynamic”
technique in which the model’s vertical motion was varied
automatically during wind-on testing. This report describes and
evaluates different aspects of the dynamic method utilized for
obtaining ground effect data in this test.  The method for
acquiring and processing time data from a dynamic ground
effect wind tunnel test is outlined with details of the overall data
acquisition system and software used for the data analysis.  The
removal of inertial loads due to sting motion and the support
dynamics in the balance force and moment data measurements
of the aerodynamic forces on the model is described.  An
evaluation of the results identifies problem areas providing
recommendations for future experiments.  Test results are
validated by comparing test data for an elliptical wing planform
with an Elliptical wing planform section with a NACA 0012
airfoil to results found in current literature.  Major aerodynamic
forces acting on the model in terms of lift curves for determining
ground effect are presented.  Comparisons of flight and wind
tunnel data for the TU-144 are presented.
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Nomenclature

Symbol Definition

A1-6 Accelerometer measurements
AF Axial Force, lbs
AR Wing model aspect ratio, b2/S
b Wing model span, in
co Wing model root chord, in
c Wing model mean geometric chord, in
c.g. Center of gravity
CL Coefficient of lift in ground effect
CL oge,  Coefficient of lift out of ground effect

%CL Percent increase in lift coefficient, [(CL-CL,oge)/CL,oge]x100
CM Coefficient of pitching moment about the quarter-chord point of the mean 

aerodynamic chord in ground effect
F Aerodynamic force, lbs
g Gravity
h Height of model over ground board,
&h Sink rate, ft/s

Ix Moment of inertia about the x-axis
Iy Moment of inertia about the y-axis
Iz Moment of inertia about the z-axis
m Mass
NF Normal Force, lbs
OGE Out of ground effect
p Roll angular velocity
PM Pitching Moment, ft-lbs
q Pitch angular velocity
Q dynamic pressure, psf
r Yaw angular velocity
RM Rolling Moment, ft-lbs
S Wing model area, in2

SF Side Force, lbs
t Time
u Axial velocity
v Side velocity
w Normal velocity
&p Roll angular acceleration, rad/s2

&q Pitch angular acceleration, rad/s2

&r Yaw angular acceleration. rad/s2

&u Axial acceleration, ft/s2

&v Side acceleration, ft/s2

&w Normal acceleration, ft/s2

YM Yawing moment, ft-lbs
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α Angle of attack, deg
ΛLE Leading edge sweep angle
θ Pitch angle, deg
φ Roll angle, deg
Flight path angle (incidence of model path relative to the ground plane, deg
δ deflection angle, deg

Acronym Definition
DGE Dynamic Ground Effect
HSCT High Speed Civil Transport
HSR High Speed Research
MIF Model Interface Rack
MPA Model Preparation Area
OGE Out of ground effect
TCA Technical Configuration Aircraft
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Introduction

The development of supersonic transport aircraft with slender wing configurations introduces
increasingly sophisticated flight control requirements for the improvement of landing and takeoff
performance.  The future of the aerospace industry lies in meeting the demands for improved
performance and reliability in aircraft and doing this in less development time and at lower costs.
The conceptual and design phases play an important part in determining the airplane program
cost.1  Correctly identifying configuration deficiencies during the preliminary design of the
aircraft can reduce both the development time and the cost of the airplane.  Accurately predicting
the landing characteristics of the airplane is an important ingredient of the preliminary design
phase.

Figure 1.  Ground effect is encountered by an airplane operating within a semispan of the ground.

“Ground effect” is the phenomenon encountered when an aircraft nears the ground during either a
landing or takeoff.  When the aircraft operates within a semispan of the ground, incremental
forces develop due to the interaction of the flow field with the ground.  At low lift levels (CL < 2)
this aerodynamic effect  is generally characterized by an increase in the lift curve slope, a
decrease in induced drag, and an increase (nose up) in the airplane pitching moment.2  For low
aspect-ratio aircraft, ground effect can severely affect the pilot’s landing performance.3  Ground
effect is a design driver of the landing gear, high lift devices, stability and control system, and if
present the thrust vectoring system.

In the past, ground effect was studied as a steady-state situation in which incremental changes to
aerodynamic forces and moments were determined.  The prominent method of predicting ground
effect was to statically place the configuration at progressively shallower heights above a ground
plane, taking data at each height.  Distinct differences between data obtained from steady-state
wind-tunnel testing and dynamic flight data for low-aspect ratio aircraft have been documented.4

Comparisons of static and dynamic ground effect tests show a trend for over predicting the lift
close to the ground for static data for highly swept, low aspect ratio aircraft.  These same trends
can be seen in lift, drag and pitching moment.  Since an aircraft in flight approaches the ground
dynamically, any overestimation of this effect by a set of static data may result in undersized
aerodynamic flight control surfaces.

In recent years, a variety of innovative testing concepts dealt with the difficulties inherent in
obtaining adequate experimental data in a dynamic situation.  In references 3, 9, and 10, wind
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tunnel data were obtained while moving the sting-mounted model vertically to the ground plane.
Data were limited to constant rates of descent for a given run.  In references 11, 14, the model
was moved horizontally through a static test chamber towards an inclined plane and data were
limited to a constant glide path angle.  During typical flight landings, the portion of flight
influenced by ground effect is characterized by continuously varying sink rate and glide path
angles.  Keeping conditions constant in each approach becomes more difficult as the model
approaches the ground, which coincides with the measurement period when ground effect
becomes most significant.

The measurement process is equally challenging for flight testing where flight safety becomes an
issue and the airplane must be operated within a small range of vertical and horizontal velocities
whenever it is in close proximity to the ground.  In addition, flight testing is becoming
increasingly expensive and can only be performed after the aircraft has been built.

In the October 1997 Dynamic Ground Effect (DGE) Test, emphasis was placed on improving
accuracy of the ground effect data by using a “dynamic” technique in which the model’s vertical
motion was varied automatically during wind-on testing.  This report describes and evaluates
different aspects of the dynamic method utilized for obtaining ground effect data in this test.
Three models, the Technical Configuration Aircraft (TCA), the TU-144, and the Elliptical wing
planform with a NACA 0012 airfoil, were tested modifying external conditions incrementally.
The methodology used for acquiring and processing time data from the dynamic ground effect
wind tunnel test is described.  Balance force and moment data measuring aerodynamic forces on
the model, contain significant inertial loads due to sting motion and support dynamics.  Normal
accelerations were measured and used to correct these balance forces.  This work addresses the
method of correction to the balance loads developed on this data.
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Experimental Approach

To investigate the effects of low aspect ratio and sweep angle on ground effects, three research
models were tested:  (1) an elliptical wing with a NACA 0012 airfoil, (2) a TU-144 wing with a
biconvex airfoil and (3) and a Technical Configuration Aircraft (TCA) planform with a biconvex
airfoil.  The two HSCT Models (the TU-144 and the TCA) were uncambered wings and featured
trailing edge flaps deflected 10 degrees.

       Elliptical wing TU-144    TCA

Figure 2.  Diagrams of three research planforms.

The Elliptical wing planform has an aspect ratio of 7 and an unswept leading edge.  With the
highest lift-curve slope of the models, it was used for determining the static flow angularity as a
function of ground height.  Previously used in other experiments in the same wind tunnel, this
model provided lift curve comparisons to validate the technique.  The TU-144 planform, with an
aspect ratio of 1.6, was used for correlating wind tunnel data to that taken in flight test, and for
validation of the wind tunnel as a way of acquiring quality DGE data with parametric variations.
The TCA planform, with an aspect ratio of 2, was used to investigate the extent to which DGE
reduces lift below that in static ground effect.

The models were rigidly mounted on a sting in the wind tunnel by means of a force balance and
were restrained in all directions of motion.  Model movement and position were computer
controlled with the capability of performing coordinated vertical travel and pitch.  The test plan
consisted of lowering the model to the ground at varying sink rates and angles of attack while
measuring ground effect through lift and pitching moment measurements.

All models were symmetrical airfoils with the same structure consisting of an aluminum plate
sandwiched by wood pieces and surrounded by a fiberglass cloth cover.  Each model utilized the
same VST-2 balance for support and shared a common specially designed upper surface mounted
balance adapter.  Table 1 presents configurational features for each model.  The airfoil thickness
varied from approximately  2" near the balance to being very thin at the airfoil edges.  The
models have a round leading edge (leading edge radius = 0.05") and a sharp trailing edge made of
aluminum.
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Model
 #

Planform ΛInboard

(deg)
ΛOutboard

(deg)
AR b (in) S

(ft2)
Mass
(slgs)

6 TCA wing 71 52 2.03 48.0 7.89 1.74
7 TU-144 wing 76 57 1.64 47.1 9.45 1.85

10 Elliptical wing 0 0 7.00 80.62 6.45 4.49
Table 1. Physical properties of three basic planforms.

The Test Facility was NASA Langley’s 14-by 22- Foot Subsonic Wind Tunnel consisting of a
Model Preparation Area (MPA) and a closed-circuit, single-return, atmospheric wind tunnel. The
MPA is a large enclosed high bay used for model setup, checkout, and test.   Models were
installed on a mobile cart in the MPA and moved into the wind tunnel test section fully
assembled and calibrated.

The wind tunnel closed test section is 14.5 ft high by 21.75 ft wide by 50 ft long and was
configured with walls and ceiling in place for this test.  The test section floor is composed of two
removable floor sections which were replaced with the dynamic cart configured for model
support.  Visual access into the test section was provided by television cameras located at various
positions in the test chamber.

A floor boundary-layer removal system at the entrance to the test section was in place for the
ground-effects testing.  Floor boundary layer control was provided by a suction device ahead of
the front cart.  The boundary-layer removal system consists of a blower and 900-hp drive motor,
a suction plenum chamber, interconnecting ducts and control valves.

Models were installed on the Dynamic Ground Effect Mobile Cart and moved into the wind
tunnel section fully assembled and calibrated on four air-bearing assemblies.  The cart was raised
into the front test bay by hydraulic lifts becoming the floor of the test section.  Powered by a
5,000 psi hydraulic system, the cart is capable of producing vertical velocities up to 15 feet/sec
maintained to within 12 inches of the floor and pitch angular rates up to 60°/sec.  The model can
be pitched from -10°  to 50° and yawed ±15°.  Model movement and position are computer
controlled with the capability of performing coordinated vertical travel and pitch.
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Figure 3.  Dynamic Ground Effect model support cart.

The HS-12 sting system was designed so that the end of the sting attached directly to the balance.
Angle-of-attack ranges other than that from ± 15 degrees were obtained with an angle section
referred to as a “knuckle”.  The sting was stiffened in the longitudinal plane of symmetry and had
4 degrees of upward bend approximately 2 feet downstream of the balance attachment joint.  A
sting adapter was designed and fabricated to fit between the model sting and the balance.  The
adapter was needed to get high-lift approach alphas as close to the ground plane without pitching
the model/sting system up and away from the ground plane.

Two types of tests were conducted in the 14- by 22- Foot Tunnel: (1) static tests where time-
averaged data were of primary concern, and (2) dynamic tests where time-dependent data were of
primary concern.  In both cases, a single data system was used.   The data acquisition system
(DAS) consisted of a model interface (MIF) cabinet, input/output (I/O) peripherals, and two
ModComp Classic 9250 computers.  One computer was dedicated to the wind tunnel and the
other to the MPA.  A data cable plugboard cabinet routed data from the various test sites to the
appropriate data acquisition subsystems.5  On-line data processing during the test provided the
test engineer with information needed to direct the research investigation.  Each run was
predetermined to have an 8-second duration at a sampling frequency of 150 Hertz per channel.
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Tunnel
Parameters

Balance

q,T,M

F

Accelerometers

a

theta
Pitch

MIF
Cabinet

Optotrak
(PC)

Plug-board
Cabinet

NEFF
600

Dynamic Data
Acquisition
System (DDAS)

Height

H

F

a

q

WIND TUNNEL

DGE DATA ACQUISITION

Pitch, H

CONTROL ROOM

Figure 4.  Data acquisition system for dynamic ground effect test.

Instrumentation wiring was routed from the model through the model support system to a model
interface (MIF) console located beneath the test section.  Each MIF contains a Neff 600 analog
signal conditioner, a digital interface and a tachometer interface.  The MIF rack provided an
interface between the wind tunnel model instrumentation and the data acquisition system in the
14- by 22-Foot Subsonic Tunnel.  In addition, the MIF cabinet provided regulated direct current
(DC) for the model instrumentation.

Analog signal conditioning was provided for the analog measuring devices by a Neff 600 analog
signal conditioner.  The output signals from the Neff were amplified, converted to digital codes,
recorded and directly processed.  Analog and digital input data were transmitted from the test
sites on the MPA to a plugboard cabinet in the control room.  Analog data were patched 16
channels at a time while digital data were patched, 8 multiplexed channels at a time.  A
ModComp 9250 computer was used for the acquisition and archival of all data.  Model
instrumentation was connected to the data acquisition system via the MIF console.

Each test was conducted at constant dynamic pressure or velocity.  The dynamic pressure in the
test section was monitored by using both a static pressure probe located 12 feet upstream of the
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test section and a total pressure probe located 59.4 feet upstream of the test section in the settling
chamber.  The static and total pressure probes were connected to a differential, fused-quartz
bourdon pressure transducer with a digital readout.  This transducer has a measured accuracy of ±
0.08 psf of the full-scale reading.  The differential pressure reading between the static and total
pressure readings is referred to as the indicated dynamic pressure, qind.  This indicated dynamic
pressure is related to the actual dynamic pressure of the test section by means of calibration
curves that have been determined for the different test-section configurations.  No wall
corrections were implemented in the code.  The test was run with the boundary layer removal
system in place.  A test Reynolds number of approximately 7 x 106 and Mach ≈ 0.24 was
maintained by adjusting the tunnel speed.

Instrumentation

During the dynamic test, vibrations from the driving system were introduced into the measured
loads of the system. Accelerations on the model were measured and used to correct balance
forces. The vibrations were removed by measuring the accelerations of the system, calculating the
inertial loads from these accelerations, and then subtracting the inertial loads from the balance
forces.

Actual forces and moments were obtained by correcting all balance component test data for the
applicable component interaction data that were recorded during the balance calibration. Force
and moment measurements were made using the VST2 six component strain gauge balance.  The
VST2 has a calibration range of ±1000 pounds in the normal direction,±500 pounds in the axial
direction, ±4000 in-pounds of pitching moment, ±3000 in-pounds of rolling moment, ±3000 in-
pounds of yawing moment, and ±500 pounds in the side direction.  Interactions between the
components were accounted for using a 6 x 27 matrix provided with the balance.

An Optotrak System measured pitch angle and height above the ground. Two cameras were set
up in the ceiling of the wind tunnel to view six infrared diodes on the model.  These markers or
strobers provided height (above ground plane) and the model pitch angle measurements.  A
Pentium based PC having a 2-channel I/O card provided the data acquisition for the system.  The
PC based system provided a sampling rate of approximately 50 samples/sec for each channel.
Synchronization was provided between this system and the ModComp through a system of
interrupts initiated by the ModComp. The ModComp provided integration of the data packets
originating from the Optotrak, i.e, for two channels of data (pitch and height) into the database to
be archived.

Six Endevco model 7290A-10 accelerometers were used to measure model accelerations.  These
accelerations have a range of ±10 g and a frequency response of 0 to 500 Hz.  The accelerometers
were  positioned in an orthogonal layout on the models, as shown in Figures 5 and 6.
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Measurement Technique

The basis for this analysis and computation of the unsteady motion of a flight vehicle is to treat
the model of the vehicle as a single rigid body with six degrees of freedom.  The mathematical
model is simplified further by treating Earth as flat and stationary in inertial space.  The rigid
body equations are derived by applying Newton’s laws to an element of the model and
calculating the summation of all the forces that act upon all the elements in the model.  The
equation relates the resultant external aerodynamic force on the model to the motion of the
reference center.

Force and Moment Data Translation

Moments and forces measured by the balance were translated to the moments and forces acting
on the model using equations from Gainer and Hoffman:6

X-axis

BalanceModel AFAF −= (1)

YNFZSFRMRM BalanceBalanceBalanceModel ⋅−⋅+= (2)

Y-axis

     SF SFModel Balance=     (3)

    PM PM AF Z NF XModel Balance Balance Balance= − ⋅ + ⋅    (4)

Z-axis

NF NFModel Balance= − (5)

YM YM AF Y SF XModel Balance Balance Balance= + ⋅ − ⋅ (6)

These equations can be greatly simplified if the model center of gravity is driven to the moment
center of the balance (i.e., if X Y Z= = = 0 ).
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Equations for Removal of Inertial Loads

Data obtained from dynamic wind tunnel testing were reduced using the general equations of
motion for six degrees of freedom.7  The equations given here are specialized cases of the general
forms given in Gainer and Hoffman’s reference.  Those equations applied to this test procedure
are:

X-axis

{
AF m u qw rv mg AFAero Model= + − + −( & ) sin

1 2 3 4
123 124 34 123

θ (7)

{

RM pI qr I I pq r I RMAero x Z Y XZ Model= + − − + −& ( ) ( &)
1 2 4

1 24444 34444 124 34
(8)

Y-axis

{
SF m v ru pw mg SFAero Model= + − + −( & ) cos

1 2 3 4
124 34 124 34 123

θ (9)

PM qI pr I I p r I PMAero Y X Z XZ Model= − + − + − −& ( ) ( )
1

2 2

2 4
123 1 24444 34444 124 34

(10)

Z-axis

{
NF m w pv qu mg NFAero Model= + − − −( & ) cos

1 2 3 4
1234 124 34 1234

θ (11)

{

YM rI pq I I qr p I YMAero Z Y X XZ Model= + − + − +& ( ) ( & )
1 2 4
1 24444 34444 124 34

(12)

The equations derived in the preceding sections are valid for any orthogonal axes fixed in the
model.  The models are assumed to be exactly symmetrical about the XZ plane.  These equations
are limited to models symmetric about the XZ plane, models with no thrust and no change in the
mass of the model.  Inertial load corrections were performed in two stages with the primary and
secondary corrections indicated with numbers 1,2 respectively.  The terms numbered 3 were the
corrections made by wind off zero and weight tare calibrations.  Terms numbered four are the
forces and moments measured on the model after a translation from the balance forces and
moments.
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Accelerometer Layout for TU-144 (Bottom View)

#1

#2
#3

#4
#5

#6
MRC

+x

+y

Distances from MRC to Center of Each Accelerometer (in inches)

2

3

15

16
16.75

5.5

Notes:
• z distances not included in current data reduction
     routine and are not listed here
• actual wing planform is not shown
• not to scale

MRC -- 50% mac

Positive Accelerometer Measurement Axis
#1,2,4  -- Down
#3,5 -- Toward Right Wing
#6 -- Forward

Figure 5.  Accelerometer Layout for TU-144 Planform.
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Accelerometer Layout for TCA (Bottom View)

#1

#2
#3

#4
#5

#6
MRC

+x

+y

Distances from MRC to Center of Each Accelerometer (in inches)

2.264

3.264

14.736

15.736
16.436

5.5

MRC -- 50% mac

Positive Accelerometer Measurement Axis
#1,2,4  -- Down
#3,5 -- Toward Right Wing
#6 -- Forward

Notes:
• z distances not included in current data reduction
     routine and are not listed here
• actual wing planform is not shown
• not to scale

Figure 6.  Accelerometer Layout for TCA Planform.
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Linear Accelerations

Accelerometer measurements were combined to calculate linear and angular accelerations.  The
accelerations were  then integrated providing the velocity calculations.  Detailed descriptions of
these calculations are  presented in the following sections.

Axial acceleration, x-axis

& (sin )u A a gwoz= − −6 1 θ (13)

Side acceleration, y-axis

&v A
A A

xdist xdist
xdist awoz= +

−
+

−3
5 3

5 3
3 (14)

Normal acceleration, z-axis

& ( cos )w A
A A

xdist xdist
xdist a gwoz= +

−
+

− − −2
4 2

4 2
2 1 1 θ (15)

Angular Accelerations

Roll angular acceleration

&p
A A

ydist ydist
=

−
+

2 1

1 2
(16)

Pitch angular acceleration

&q
A A

xdist xdist
=

−
+

4 2

2 4
(17)



19

Yaw angular acceleration

&r
A A

xdist xdist
=

−
+

5 3

3 5
(18)

Velocity Calculations

Velocities in the equations were calculated using a numerical integration scheme based on Tick’s
rule8.  The method uses a linear combination of the acceleration time samples (an) where the an are
the integrand values and the vn are the integral values.  The formula is (using v0 = 0)

vn +1 = vn−1 + h(0.3584an +1 +1.2832an + 0.3584an−1 ) (19)

In the presence of noise, usually associated with high frequencies, this function did not perform
well and an alternate method of computation for was used,

w = u cosθ (20)

Sink Rate Calculation

&

cos
h

w
=

θ
(ft/sec) (21)

Total Velocity Calculation

( )V V h ftTot Tun= +
2 2( &) ( / sec) where Vtun = VELU parameter (22)

Calculated ground height, h/b

h

b
=

HGTOPT

b
(23)
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Flight Path Angle

γ =






−tan

&

(deg)1 h

VTot

(24)

Angle of Attack

α = θ −γ (25)

Corrected Dynamic Pressure

qcorr = q
VTot

Vun

 
 
  

 
 

2

(lbs / ft ) (26)

Note that the corrected dynamic pressure measurement was not used in these calculations to
conform with the static data reduction which was reduced using the QU parameter.

Corrected Force/Moment Coefficients

The normal-force coefficient, corrected for inertial loads is

C
NF

q SN
Aero

corr
corr

= (27)

The axial force coefficient, corrected for inertial loads is

C
AF

q SA
Aero

corr
corr

= (28)
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The pitching moment coefficient corrected to the model reference center and for inertial
loads is

C
PM

q ScM
Aero

corr
corr

= (29)

Performance Coefficients

The calculated lift coefficient, CL is defined to be

CL = CNcorr
cosα − CAcorr

sinα (30)

The calculated drag coefficient, CD is defined to be

CD = CNcorr
sinα + CAcorr

cosα (31)
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Results and Discussion

One of the purposes of testing a model in the wind tunnel is to estimate the aerodynamic forces
the full scale vehicle will experience during operation.  Distinct differences between data
obtained from steady-state wind-tunnel testing (constant height above ground) and dynamic flight
data (descending to the ground) were documented during a series of flight tests of low-aspect
ratio aircraft beginning in the late 1960s.9  Subsequent wind-tunnel experiments in which the
dynamic conditions of descending flight were simulated verified this distinction.10,11,12  The
distinction has also been confirmed through recent flight testing which has identified trends
dependent on sink rates.13,14  The development of a ground-based technique at NASA for the
measurement of dynamic or time-dependent ground effects was driven by the existence of these
large discrepancies between flight test data and conventional wind tunnel ground effects tests for
supersonic transport aircraft with high swept wing configurations.  The experiment was designed
to test the hypothesis that aspect ratio or sweep angle along with rate of descent might be an
important parameter in determining actual ground effects.   Because ground effects tend to be
more significant for low-aspect ratio aircraft, the current development of high-speed civil
transport aircraft which use slender wing configurations has motivated research into this field.

In order to evaluate the dynamic ground effects of low aspect ratio and highly swept wing
configurations, the aerodynamic characteristics of an unswept elliptic wing model and two highly
swept wing models were tested in the subsonic wind tunnel.  The elliptic wing model, which had
been used in this same wind tunnel on previous tests, enabled validation of the test method by
providing comparative data for steady state tests.  Results depicting static lift curve data in Figure
7 show good agreement with prior tests for the Elliptical wing planform15.
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Figure 7 Comparison of static lift curves for the Elliptical wing planform with those in current literature.
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An advantage of wind tunnel testing is that conditions can be held constant and varied
incrementally in order to isolate different effects and their sources.  Comparisons of the effects of
sink rate on ground effect for the different planforms are illustrated in Figures 8-11.  The
fractional increase in the lift coefficient during a plunge (or a descent) , normalized to an Out of
Ground Effect (OGE) lift coefficient, is depicted for runs at consecutively higher rates of descent.
All other conditions during the runs were held constant.  The rate of descent was varied as shown
from -1, -2.333, and -4.667 ft/sec with the model held at a constant angle of attack of 9, 11 or 5
degrees.  The three planforms showed comparable ground effect increases for each sink rate
tested.  Ground effect increased consistently for all models for the three sink rates.
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Figure 8.  Effects of various sink rates on dynamic ground effect for the TU-144 Planform.
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DYNAMIC GR OU ND E F F E CT  L IF T  CU R VE S  AT  VAR YING S INK  R AT E S
 F OR  T CA P L ANF OR M, α=9°
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Figure 9.  Effects of various sink rates on dynamic ground effect for the TCA planform at alpha = 9
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DYNAMIC GROUND E FFE CT  L IF T  CURVE S  AT  VARYING S INK RAT E S  FOR   
E L L IPT ICAL  WING, α=5°
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Figure 11.  Effects of various sink rates on dynamic ground effect for the Elliptical wing.

Examination of the lift curves in Figures 8-11 shows an increasing dispersion in the fractional lift
associated with higher sink rates.  To further investigate this scattering, the  lift curves for the
TU-144 planform were plotted against time and ground height.  Figure 12 illustrates the
fractional lift on ground approach during an 8 second run for differing sink rates.  In each run, the
start of the plunge is seen at the top of the graph.  Associated with the start of the plunge is the
vibration of the driving equipment. Forces related to these vibrations at the start of the plunge
have a settling time of approximately 0.8 seconds.  For slow sink rates as seen in the top graph,
enough time elapses between the plunge and the in ground effect to allow for the settling of these
forces.  For the higher sink rate, there is no settling time allowing for the decay of these forces
before the model is considered to be in-ground effect.  This problem can be addressed by either
improving the driving mechanism to reduce the impact of the start of the plunge or starting the
plunge at a higher ground height (if possible) allowing more time to elapse before the model is in
ground effect.  For the higher sink rates, more control is required for starting and stopping the
equipment smoothly and in a shorter amount of time.  This would enable a more constant sink
rate on start up and at closer proximity to the ground.
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Figure 12.  Elapsed time associated with runs at varying sink rates.

In dynamic wind tunnel testing, vibrational loads imparted to the model from the driving system
prevent determining aerodynamic data directly from the time data.  By measuring the model
accelerations, these vibrational loads can be removed from the system.16  In this wind tunnel test,
vibrational loads were either removed or reduced so as to have a negligible effect on the
aerodynamic results.  Figure 13 illustrates the removal of inertial loads from the normal force
measured by the balance during a dynamic run.
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Correction for Normal Force during Dynamic Run
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Figure 13.  Inertial load removal for normal force in a dynamic rate, sink rate = -4.667 ft/sec.

Small variations remaining in the residual load are attributed to a high frequency noise level
apparent in the accelerometer prior to the run as well as small errors in acceleration measurements
due to calibration.  To study the effect of equipment vibration caused by the dynamics of a run on
the quality of the data, a spectral analysis of the components of the run pictured in Figure 14 was
studied. Frequency components for the normal acceleration, the normal force (before inertial load
removal) and the normal force (after correction) are seen in Figure 14.  The vibrations at
approximate 9 Hz level are reduced while a small amount of high frequency noise (35 Hz) in the
acceleration continues to be seen after correction is applied to the normal force.
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Figure 14.  Spectral analysis of dynamic run.

Results presented in Appendix A summarize the removal of inertial loads for normal and axial
forces as well as for pitching moment for each model.
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Dynamic wind tunnel measured lift increments are presented and compared with steady state
wind tunnel data for each planform in Figures 15 through 16 and show a minimal variation which
was a characteristic result for this experiment.  Data for the static runs are shown to be relatively
close to the dynamic results.
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Figure 15.  Comparison of dynamic and static ground effect lift curves for TU-144 model.
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Figure 16.  Comparison of dynamic and static ground effect lift curves for TCA planform.
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COMPARISON OF DYNAMIC AND STATIC GROUND EFFECT LIFT CURVES FOR  
FOR ELLIPTICAL WING PLANFORM
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Figure 17.  Comparison of dynamic and static ground effect lift curves for elliptical wing planform.

Flight measured increments in lift are presented and compared to dynamic wind tunnel data for
the TU-144.  Figure 18 demonstrates the close approximation dynamic wind-tunnel data produce
to the flight test data.
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Figure 18.  Comparison of flight and wind tunnel data for TU-144.
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Figures 19-20 compare the incremental lift coefficient on several airplane configurations having
widely different aspect ratios and sweep angles at h/b = 0.3.  Flight data for the TU-144 and the
F16-XL were obtained using “constant-alpha-approaches”  and a constant throttle setting in
Flight Test Maneuvers.  Static and dynamic data for the TU-144 and TCA planforms were
compared with the University of Kansas data.  The large disparity between the static wind-tunnel
data and the dynamic and flight test data is not apparent in the Langley data.  Static and dynamic
data for the Langley models showed a strong correlation with the flight test data.
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Figure 19.  Incremental lift coefficient versus aspect ratio for static and dynamic ground effect measured
in the wind-tunnel at h/b=0.3.
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Incremental lift coefficient vs sweep angle
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Figure 20. Incremental lift coefficient versus aspect ratio for static and dynamic ground effect measured
in the wind-tunnel at h/b=0.3.
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APPENDIX A  Inertial Loads Removal

Balance force and moment data for each model in the test facility contained significant inertial
loads due to carriage motion and support dynamics.  Six accelerometers were placed in an
orthogonal layout in order to measure the inertial loads on the model.  Prior to a set of runs for
each model, a wind-off weight tare and three calibration runs (pitch, yaw, roll) were completed.
The weight tare calculated the weight of the model and provided the system with additional
correction factors for the weight factor of each model.  Extensive data is available from three
normal, two axial, and two side accelerometers.  This section addresses the method of correction
to the balance loads developed on the latest data.

The calibration run consisted of a wind-off, static run during which the model was bumped or
“jogged” in one of three directions (pitch, yaw, roll) to induce inertial loads.  The model was kept
at a constant height of 50” above the ground and at a constant angle of attack.  The data set for
these runs was curve fitted in linear and multiple regressions for the optimal removal of inertial
loads.

Additional calibration was performed for each acceleration in order to remove a bias or zero
offset.  This was performed by averaging each acceleration over a 0.5 second (75 sample) period
at the beginning of each run (prior to any movement of the mast) and using this value as a zero
offset which was subtracted out of all remaining samples per acceleration.

Results of the correction for inertial loads are presented for each force and moment.  Subtraction
of the inertial loads accounted for the removal of most of the measurable vibrational effects.
Secondary accelerations from coupled velocity terms (2) in equations 7.0-12.0 had a negligible
effect on the removal of inertial loads.  For tests without significant model velocities, the
correlation between the measured loads and associated accelerations provided a measure of errors
in the system.  Models 6 and 7 show excellent correlation between either normal or axial loads
and corresponding accelerations.  A spectral analysis exhibits frequencies associated with the
inertial loads.  In addition, the spectral analysis pinpoints low level noise (at 1 Hz) and higher
frequencies (at 60 Hz) which interfered in some cases with the correction.  Small variations
remaining in the residual load were attributed to the noise level of the signal as well as errors in
acceleration measurements.

• External loads imparted on the system from striking it

• Impulses in the analog signal not resulting from actual loads

• Noise level of the signal

• Errors in acceleration measurements
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Figure A1.  TCA wing inertial loads correction for normal force.
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Figure A2.  TCA wing correlation between normal force and normal acceleration.
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Figure A3.  Spectral Analysis of Normal Acceleration.
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Figure A4.  TCA wing Spectral Analysis of Normal Force, no correction.
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Figure A5.  TCA wing Spectral Analysis of Normal Force, primary correction.
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Figure A6.  TCA wing inertial loads correction for axial force.
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Figure A7.  Pitch Calibration, Normal Force, secondary correction applied.
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Figure A8.  TCA wing spectral analysis of axial acceleration.
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Figure A9. TCA wing spectral analysis of axial force, no correction.
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Figure A10. TCA wing spectral analysis of axial force, primary correction.
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Figure A11. TCA wing inertial loads correction for pitching moment.
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Figure A12.  Correlation between pitching moment and pitch acceleration.
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Figure A13.  TCA wing spectral analysis of pitch acceleration.
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Figure A14.  TCA wing spectral analysis of pitching moment, no correction.
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Figure A15.  TCA wing spectral analysis of pitching moment, primary correction.
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Figure A16. TU-144 wing inertial loads correction for normal force.
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Figure A17. TU-144 wing correlation between normal force and normal acceleration.



41

NORMAL ACCELERATION

-2

2

6

10

0 10 20 30 40 50 60 70

Frequency, (Hz)

A
cc

el
., 

(f
t/

se
c

2 )

Figure A18. TU-144 wing spectral analysis of normal acceleration.
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Figure A19. TU-144 wing spectral analysis of normal force, no correction.
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Figure A20. TU-144 wing spectral analysis of normal force, primary correction.



42

-20

-10

0

10

20

30

0 2 4 6
Time (sec)

A
xi

al
 F

o
rc

e,
 (

lb
)

No correction

Primary correction

Model 7, Run 149

Figure A21. TU-144 wing inertial loads correction for axial force.
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Figure A22. Correlation between axial force and axial acceleration.
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Figure A23. TU-144 wing spectral analysis of axial acceleration.
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Figure A24. TU-144 wing spectral analysis of axial force, no correction.
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Figure A25. TU-144 wing spectral analysis of axial force, primary correction.
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Figure A26.  TU-144 wing inertial loads correction for pitching moment.
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Figure A27.  TU-144 wing correlation between pitching moment and pitch acceleration.
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Figure A28 Spectral Analysis of Pitch Acceleration.
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Figure A29 Spectral Analysis of Pitching Moment, no correction.
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Figure A30 Spectral Analysis of Pitching Moment, primary correction.
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Figure A31. Elliptical wing inertial loads correction for normal force.
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Figure A32. Elliptical wing correlation between normal force and normal acceleration.
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Figure A33. Elliptical wing spectral analysis of normal acceleration.
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Figure A34. Elliptical wing spectral analysis of normal force, no correction.
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Figure A35.  Elliptical wing spectral analysis of normal force, primary correction.
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Figure A36.  Elliptical wing inertial loads correction for axial force.
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Figure A37.  Elliptical wing correlation between axial force and axial acceleration.



49

Axial Acceleration

-0.2
0

0.2
0.4
0.6
0.8

0 10 20 30 40 50 60 70

Frequency, (Hz)

A
cc

el
., 

(f
t/

se
c2 )

Figure A38.  Elliptical wing spectral analysis of axial acceleration.
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Figure A39.  Elliptical wing spectral analysis of axial force, no correction.
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Figure A40.  Elliptical wing spectral analysis of axial force, primary correction.
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Figure A41.  Elliptical wing inertial loads correction for pitching moment.
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Figure A42.  Correlation between pitching moment and pitch acceleration.
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Figure A43.  Elliptical wing spectral analysis of pitch acceleration.
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Figure A44. Elliptical wing spectral analysis of pitching moment, no correction.
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Figure A45. Elliptical wing spectral analysis of pitching moment, primary correction.
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APPENDIX B Post-Processing data using comboa

B.1 Logon Procedure

Enter user id: dgetest

Enter password: 

B.2 Setting up the Comboa Processing Directory

Directory: export/home/dge

Required input files: groups.pre
groups.1422
comboa
inxxx

Output files: answer
logcomboa
outcomboa
euinfo
windoff.log

B.3 Defining the inxxx file

csfile cs486
rpfile rptname
rawfile TEST46200229
229 -1 -1 2
YES
NO
NO
PR ALL
-1

B.3.1 rptname file

The rptname file is used to specify the parameters to be processed for each run.  A report is
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generated for the selected parameters and is called outcomboa.

B.4 Comboa user interface

From cmdtool window:

Type comboa
Enter Operator Input File Name:inxxx

STOP: Normal Termination of COMBOA!
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APPENDIX C Post Processing data using dynamic

The software package dynamic performs post processing of dynamic data collected from force-
balance and accelerometer outputs.  The program reads the most current answer data file created
by comboa in the same directory.  The following files are required for dynamic to function:

accelr.F acceleration calculations and zero offset cal from run XXX
dynam.F data reduction parameters such as lift and drag coefficients
dynamic.F main processing unit
ifind.F finds parameters in answer
inertia.F performs a multivariate regression to calc moments of inertia
intgrt.F integrates accelerations to calculate velocities
ipracc.F outputs accelerations
iprbal.F output balance forces
iprsig.F output signals
iprvel.F output velocities
linear.F performs mass calculations
pm.F called by inertia, perfoms multivariate regression
prload.F calculates aerodynamic loads
readd.F reads answer
rjusty.F right justifies search field
rm.F 3-component multivariate regression
rmld.F subroutine to filter the inertial loads out of the measurements
setupd.F reads model configuration file
config6.inp model 6 configuration file
config7.inp model 7 configuration file
config10.inp model 8 configuration file

groups.i
params.i
symfup.i

Input File

answer

Output File naming convention

runXXX_YYY_acc -Accelerometer data from run Y

runXXX_YYY_dyn -Processed lift, drag coefficients, alpha, sink rate

runXXX_YYY_lng -Longitudinal (Normal, Axial, and Pitch) loads and accelerations

runXXX_YYY_ltd -Lateral (Roll, Yaw, and Side) loads and accelerations measured
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runXXX_YYY_ld -Velocities

runXXX_YYY_vel -Balance data in voltage form as it was acquired

runXXX_YYY_g -Accelerometer signals

The subroutine first goes through a linear regression scheme of the three force equations to
calculate the mass of the model.  In these equations, m is the mass of everything on the model
side of the strain gauge of the balance.  The program then uses Multivariate regression to solve
for the inertias and centroid positions involved in the three moment equations. The scheme used
for solving for these constants was to solve for the most significant terms. Therefore, Iy (y-
Inertia) in the pitching moment equation was calculated first, then Ix (x-Inertia) in the rolling
moment equation and finally Iz (z-Inertia) in the yawing moment equation. The centroid positions
were being calculated along with each of the inertias. The multivariate regression scheme has the
following form:

y= b1* x1 + b2*x2 + b3*x3

where, b1, b2, b3 -regression constants (Inertias, centroid positions)

x1, x2, x3 -independent variables (acceleration data arrays)

y     -dependent variable (moment data arrays)

Once the constants are calculated, they are used to subtract the inertial loads from the total loads
in file runY.ld. The resulting residual loads are then formatted into a file which PREPLOT can
easily read. The file is composed of two zones. The first zone is the total loads and the second is
the residual loads.

Since the mass of the model, inertias and centroid positions are calculated with subroutine inertia,
cards 5 and 6 in the configuration file (configY.inp) are not necessary. However, the distances,
dist(i), from the accelerometers to the model’s center of gravity will still need to be measured
since they are used in the subroutine ACCELR.

C.1 Setting up the Dynamic Processing Directory

Several model dependent configuration files are required in order to properly perform
calculations:

Model 6: config6.inp
Model 7: config7.inp
Model 10: config10.inp
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Model configuration file

The model configuration file (configxx.inp) contains the following information:

x distance from balance moment reference center to six accelerometers (in inches)

y distånce from balance moment reference center to six accelerometers (in inches)

z distance from balance moment reference center to six accelerometers (in inches)

accelerometer sensitivities  (these were configured as -1.0 if the accelerometer was placed
upside down)

mass (slugs) as calculated by the calibration runs for each model

Moments of inertia as calculated by the calibration runs for each model. (slug-ft2)

Wing Area (ft2) SAREA1, BSPAN1 (inches) and Reference chord length, CHORD1 (inches)

Model 6 configuration file

card 1 - x distance from balance to accel

2.264 2.264 3.264 14.736 15.736 16.436

card 2 y distance from balance to accel

5.5 0 0 0 0 0

card 3 z distance from balance to accel

-2.638 -2.638 -2.375 -2.638 -2.375 -2.375

card 4 x,y,z distance from balance to cg

0 0 -2.5

card 5 accel sensitivities

1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

card 6 mass (slugs)

1.132 1.759 1.8531

card 7 Ixx Iyy Izz Ixz slug-ft2 reference to mrc

0.6299 2.3319 2.6956 -0.001
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card 8 Sarea bspan chord

7.894 48.0 34.723

Model 7 configuration file

Card 1 - x distance from balance to accel

-2.00 -2.00 -3.00 15.00 16.00 16.25

card 2 y distance from balance to accel

5.5 0 0 0 0 0

card 3 z distance from balance to accel

-2.638 -2.638 -2.375 -2.638 -2.375 -2.375

carrd 4 x,y,z distance from balance to cg

0 0 0

card 5 accel sensitivities

1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

card 6 mass (slugs)

1.347 1.987 2.144

card 7 Ixx Iyy Izz Ixz slug-ft2 reference to mrc

1.133 2.968 3.658 -0.025

card 8 Sarea bspan chord

9.466 47.1 38.25

Model 10 configuration file

card 1 - x distance from balance to accel

0 0 29.03 11.65 11.65 16.53

card 2 y distance from balance to accel

2.625 0 1.75 0 1.75 0
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card 3 z distance from balance to accel (not applicable)

-2.638 -2.638 -2.375 -2.638 -2.375 -2.375

card 4 x,y,z distance from balance to cg

0 0 0

card 5 accel sensitivities

1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

card 6 mass (slugs)

1.347 1.987 2.144

card 7 Ixx Iyy Izz Ixz slug-ft2 reference to mrc

1.133 2.968 3.658 -0.025

card 8 Sarea bspan chord

6.448 80.622 12.331
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APPENDIX D Accelerometers

Accelerometer sensitivity coefficients

AccelerometerSerial
Number

Sensitivity coefficients
(V/g)

10861 0.1999

10862 0.1998

10863 0.2005

10864 0.2014

10865 0.1987

10866 0.2003

10867 0.1995

10868 0.1997

11671 0.19805

11672 0.19933

11673 0.19932

11674 0.20171

11675 0.20012

11676 0.19939

11677 0.19827

11678 0.19918
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VARIABLE CAPACITANCE
ACCELEROMETER

Specification

Model 7290A-10

Range ±10g

Frequency Response 0-500

Full Scale Output ±2V

Non-linearity and Hysteresis ±0.20

Accelerometer Orientation

Model-* Position Toward
Right Wing

Down Forward

6,7 Model 3,5 1,2,4 6

Balance 9 7,8 10

10 Model 3,5 2,4 6

Balance 9 7,8 10
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